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Abstract

A new method for calculating finite sectional strain from distributions of elliptical objects is presented. The only assumptions required are that

before deformation (1) long axis orientations are uniformly distributed and (2) the distribution of axial ratios is independent of orientation.

Importantly, an estimate of the orientation of the long axis of the strain ellipse is not required before the method can be applied. The method is based

on the conceptually simple fact that the mean radial length of a set of uniformly oriented ellipses in the unstrained state equates to that of a circle, so

that after strain, the mean radial length evaluates to the strain ellipse. Errors associated with the method are calculated from the bootstrap, and a

simulation study verifies both the applicability of the new method for finite strain estimation and the accuracy of errors calculated with the

bootstrap. The method is applied to a large set of sandstone quartz clast data from the Irish Variscides, whilst cross-checking of results with those

from established methods also validates the approach taken.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ramsay (1967) first introduced the idea of determining

finite strain from randomly oriented populations of

deformed elliptical objects, which was further developed

by Dunnet (1969) and extended using graphical methods by

Elliott (1970) and Dunnet and Siddans (1971) to include

non-random initial distributions. This technique has become

known as the Rf/f method. All of the above methods require

non-repeatable, subjective application of graphical tech-

niques, which is not ideal. Matthews et al. (1974) developed

a purely algebraic method for strain ellipse determination

enabling statistical treatment of errors and precision, though

the orientation of the principal strain axis needs to be

independently estimated prior to calculating the finite strain

ellipse. This approach has proved unpopular.Using the usual

assumptions of an initial random distribution and hom-

ogenous deformation together with the matrix, Shimamoto

and Ikeda (1976) developed a simple algebraic method of

analysis, whose only limitation is that it requires evaluation

of the eigenvalues of a matrix. Robin (1977) describes the

theory and application of a strain analysis method for

objects of any shape, which may be applied to elliptical

objects, but requires the orientation of the principal strain

axes to be independently determined. Le Theoff (1979)

demonstrated the applicability of the method of Dunnet

(1969) to non-coaxial strain states and De Paor (1980)

showed that elliptical distributions cannot be separated into

an initial non-random part and a tectonic part. By linearising

the equations of Dunnet (1969), Yu and Zheng (1984) took a

least squares approach to analysing elliptical data. However,

Mulchrone and Meere (2001) have cast doubt on the

accuracy of this approach, probably due to the resulting data

distribution being non-Gaussian, a fundamental assumption

of linear least-squares regression.

In a somewhat separate research stream several workers

have investigated the properties of strained distributions of

ellipses. Lisle (1977a) investigated measures of strain such

as the arithmetic, geometric and harmonic means and Lisle

(1977b) introduced the theta curve method and considered

the influence of pressure solution. Borradaile (1976)

introduced the minimum x 2 method, which involves de-

straining an ellipse population about an independently

determined finite strain axis until the distribution becomes

most uniform and Peach and Lisle (1979) developed a
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program for this method. Borradaile (1987) discussed the

impact of an initial fabric on strain analysis and Borradaile

and McArthur (1991) compared the methods of Yu and

Zheng (1984), Robin (1977) and Dunnet and Siddans

(1971), illustrating the importance of geological observation

in combination with each method.

In summary, the above research effort illustrates the

importance of the analysis of ellipse distributions in

determining finite strain for structural geologists. Why another

method for analysis? The technique described in this paper has

at least one of several advantages over previous approaches:

1. It is simple enough to be implemented in a spreadsheet

application.

2. It is non-graphical.

3. It produces repeatable, objective results.

4. Confidence limits for the results are readily calculated.

5. An estimate of the orientation of the long axis of the strain

ellipse is not a prerequisite.

6. It requires that the distribution of axial ratios is independent

of orientation.

For example, Shimamoto and Ikeda (1976) requires an

eigenvector/eigenvalue calculation, usually not included

with standard spreadsheet applications. The methods of

Matthews et al. (1974) and Robin (1977) require an

independent estimate of the orientations of the principal

axes of the strain ellipse. Robin (1977) suggests this

estimate may be evaluated from analysis of the long axes

of elliptical objects or by repeatedly applying the technique

for different assumed orientations of the principal strain

axes and taking the orientation which maximises the strain

ratio. However, any error in estimating the orientation of the

principal strain axes automatically propagates into the strain

ratio calculation.

2. Derivation of the method

2.1. Assumptions

The method derived here for determination of finite strain

is based upon the following basic assumptions:

1. The population of elliptical objects have the following

characteristics in the unstrained state: (1) long axis

orientation (f ) is a uniform random variable on the [0,p ]

interval (Fisher, 1993, p. 43), i.e. it is equally probable

that the long axis lies along any direction in the interval,

and (2) the distribution of axial ratios (R ) is independent

of orientation, which means that R is an isotropic,

random variable (note that the exact type of random

variable does not need to be specified). For the sake of

conciseness a population of elliptical objects with these

prescribed characteristics is simply referred to as

isotropic.

2. Deformation within the region of analysis can be

considered homogeneous.

3. The viscosity contrast between ellipsoidal objects and

surrounding matrix approaches unity.

Although the analysis may be applied to distributions

which do not strictly adhere to the above assumptions,

erroneous conclusions may be drawn if these factors are not

taken into account. The assumptions presented above also

apply to the Rf/f method (Ramsay, 1967; Dunnet, 1969;

Dunnet and Siddans, 1971; Lisle, 1977a,b), although the

method has been extended to take account of deviations

from these assumptions (Dunnet and Siddans, 1971).

2.2. Theoretical basis of the method

2.2.1. Introduction

It is shown below that the mean radial length of an

isotropic distribution of ellipses is a constant independent of

orientation, i.e. forms a circle. Therefore, if the ellipse

distribution is subjected to homogenous deformation, the

circle of mean radial length is transformed to the finite strain

ellipse, in the same way as any other material circle is

transformed.

2.2.2. The mean radial length of a random distribution of

ellipses

A few basic concepts and related equations are

introduced before proving that the mean radial length of a

random distribution of ellipses is constant. The following

discussion refers to a distribution of ellipses in the

undeformed state and every effort is made to conform

with existing notation and standard equations (e.g. Ramsay,

1967, pp. 65–66). However, some of the equations given

below are probably unfamiliar but have been chosen to

simplify the mathematics.

Fig. 1 illustrates an ellipse centred on the origin whose

half axes are of length a and b, respectively, and whose long

axis makes an angle f with the x-axis. The equation of such

Fig. 1. An ellipse with long axis of length a and short axis of length b,

whose long axis makes an angle f with the positive x-axis. u and r are polar

coordinates for a point on the ellipse.
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an ellipse in polar co-ordinates (r,u ) is given by:

r ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 e2

1 2 e2cos2ðu2 fÞ

s
ð1Þ

where u varies from 0 to 2p and e, the eccentricity, is given

by:

e ¼

ffiffiffiffiffiffiffiffiffiffi
1 2

b2

a2

s
ð2Þ

and the vector r is the radial length, whose length is r,

generated by joining the origin to each point on the ellipse.

By noting that the axial ratio of an ellipse is R ¼ a/b and by

scaling each ellipse such that its area equals that of the unit

circle (i.e. p ):

a ¼
ffiffi
R

p
ð3Þ

b ¼
1ffiffi
R

p ð4Þ

Eq. (1) becomes:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

R2 þ ð1 2 R2Þcos2ðu2 fÞ

s
ð5Þ

Suppose the value of R and u are kept fixed, then the

mean radial length along u is calculated using the integral

(see Fraleigh, 1990, p. 303, for example):

�r ¼
1

p

ðp

0
rdf ð6Þ

However, this is equivalent to:

�r ¼
1

p

ðp

0
rdu ð7Þ

where R and f are kept fixed. This is because both u and f

are uniformly distributed and periodic in the range [0,p ] so

that the values taken by u 2 f in Eq. (5) are the same

whether u is fixed and f varied or vice versa. Notice that the

integrals are evaluated over the interval [0,p ]. This is

because geological data is usually axial in the sense of

Mardia (1972) and Batschelet (1981). Evaluating the

integral in Eq. (7) gives:

�r ¼
2
ffiffi
R

p

p
K 1 2 R2
� �

ð8Þ

where K(m ) is the complete elliptic integral of the first kind

(Arfken and Weber, 1995, p. 333). K(1 2 R 2) evaluates to a

constant for particular values of R and therefore �r is also

constant.

This result implies that for a continuous distribution of

ellipses, with long axis orientations uniformly distributed in

the range [0,p ] and all with the same value of R, the mean

radial length ð�rÞ takes the same constant value for all u, i.e.

defines a circle (see Fig. 2). In addition, any function of �r

also defines a circle, as does the mean of any function of r.

This is because any function of r will also permit the

interchange of u and f, required for the proof given above.

A similar result was proved previously by Shimamoto and

Ikeda (1976) for a different set of parameters in terms of

matrix algebra and integral calculus.

The result just established is now extended to the mean

radial length of a distribution of ellipses whose orientations

are uniformly distributed in [0,p ] and axial ratio R

randomly distributed in [Rmin,Rmax], where Rmin and Rmax

are arbitrary lower and upper limits, respectively. Let

this distribution be denoted by E½ð0;pÞ; ðRmin;RmaxÞ�.

E½ð0;pÞ; ðRmin;RmaxÞ� is composed of infinitely many

distributions of the form E½ð0;pÞ; ðR;RÞ� where R takes

on all values in the interval [Rmin,Rmax]. From the result

above, �r for each distribution E½ð0;pÞ; ðR;RÞ� is a constant

Fig. 2. Diagrams on the left (a, c and e) illustrate equally spaced ellipses

having an axial ratio of two. Diagrams on the right (b, d and f) show the

corresponding mean axial ratio for the ellipses shown on the left. In diagram

(e) there are eight ellipses but the mean radial length is almost

indistinguishable from a circle. Although this diagram illustrates the case

for taking the mean of r, a similar behaviour is also exhibited for almost any

other function of r.

K.F. Mulchrone et al. / Journal of Structural Geology 25 (2003) 529–539 531



and therefore the average of �r for all E½ð0;pÞ; ðR;RÞ�

( ¼ E½ð0;pÞ; ðRmin;RmaxÞ�) is also a constant. Notice that

the distribution of axial ratios in [Rmin,Rmax] need not be

uniform and that the method is valid for any distribution of

R in [Rmin,Rmax] provided that distribution does not vary

with orientation, i.e. provided R is an isotropic random

variable. The crucial assumption here is that the orientations

of the long axes are uniformly distributed in [0,p ].

The theoretical basis of the method developed below is

that because �r versus u defines a circle in the undeformed

state, it follows that after deformation this circle is

transformed into an ellipse, and that the resulting ellipse

has the same orientation (fs) and axial ratio as the finite

strain ellipse (Rs).

2.2.3. Calculation of fs and Rs of the finite strain ellipse

The theory developed above is now extended to allow

calculation of fs and Rs, the orientation of the long axis and

axial ratio of the finite strain ellipse, respectively. It is

assumed that in the undeformed state there is a collection of

elliptical objects with long axes uniformly distributed in

[0,p ] and isotropic, randomly distributed axial ratios in

[Rmin,Rmax]. To reflect that we are dealing with the

deformed state each ellipse in the collection is denoted by

E0
i with corresponding parameters r0i, f

0
i and R0

i, where r0i is

radial length, f0
i is long axis orientation, R0

i is axial ratio and

i goes from 1 to n, the total number of elliptical objects.

Thus for E0
i the radial length, r0i, is given by:

r0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

i

R0
i2 þ ð1 2 R0

i2Þcos2ðu2 f0
iÞ

s
ð9Þ

In order to facilitate statistical analysis the equation is

rearranged by squaring, inverting and applying trigono-

metrical identities to give:

l0i ¼
1

r0i2
¼ p0

i 2 m0
icos 2f0

i

� �
cos 2uð Þ2 m0

isin 2f0
i

� �
sin 2uð Þ

ð10Þ

where:

m0
i ¼

1

2
R0

i 2
1

R0
i

 !
ð11Þ

p0
i ¼

1

2
R0

i þ
1

R0
i

 !
ð12Þ

This is referred to as the linearised polar equation of an

ellipse. Note that the theory given earlier demonstrates that

the mean of any function of r in the undeformed state

evaluates to a constant, so that calculating the strain ellipse

from the linearised polar equation of an ellipse is valid.

The mean of l0i is calculated by:

l�0 ¼
Xn

i¼1

l0i ¼
1

n

Xn

i¼1

p0
i 2

1

n

Xn

i¼1

m0
icos 2f0

i

� �� �
cos 2uð Þ

2
1

n

Xn

i¼1

m0
isin 2f0

i

� �� �
sin 2uð Þ ð13Þ

and by defining:

qs ¼
1

n

Xn

i¼1

p0
i ð14Þ

ts ¼
1

n

Xn

i¼1

m0
icos 2f0

i

� �
ð15Þ

us ¼
1

n

Xn

i¼1

m0
isin 2f0

i

� �
ð16Þ

Eq. (13) reduces to:

l�0 ¼ qs 2 tscos 2uð Þ2 ussinð2uÞ ð17Þ

Eq. (17) is the mean of the linearised polar ellipse equations

and is exactly equivalent to the linearised polar equation of

the strain ellipse:

ls ¼ ps 2 mscos 2fs

� �
cos 2uð Þ2 mssin 2fs

� �
sin 2uð Þ ð18Þ

where:

ms ¼
1

2
Rs 2

1

Rs

 �
ð19Þ

ps ¼
1

2
Rs þ

1

Rs

 �
ð20Þ

Therefore, given a natural set of n data (i.e. R0
i and f0

i, i ¼ 1

to n ), qs, ts and us are readily calculated and fs and Rs may

be estimated by equating coefficients in Eqs. (17) and (18)

as follows:

tanð2fsÞ ¼
us

ts

ð21Þ

Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qscos 2fs

� �
þ ts

qscos 2fs

� �
2 ts

s
ð22Þ

3. Error estimation using the Bootstrap

The Bootstrap is a general technique invented by Efron

(1979) to construct approximate sampling distributions for

complex statistical estimates. It is widely regarded as one of

the key advances in the field of statistics in the past several

decades. The estimates fs and Rs described above are

certainly complex statistics—they involve highly non-linear

functions of the underlying data. Even if the underlying data

were described by a simple distribution, such as a Gaussian,

the structure of the equations leading to fs and Rs means

that the construction of an analytic description of the
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sampling distribution of these estimates is intractable. This

is a situation which is ideally suited for application of the

Bootstrap.

The basis of the bootstrap is as follows: suppose an

estimate û is obtained as a function of a set of n (possibly

vector-valued) measurements x1,x2,…,xn

û ¼ u x1; x2;…; xn

� �
Suppose the xis can be regarded as a random sample from

a distribution F. The sampling distribution of û is defined as

the distribution of û over repeated random samples of size n

from the distribution F. The bootstrap replaces the unknown

population distribution F of the measurements by the

empirical distribution Fn observed in the sample x1,x2,…,xn.

The bootstrap sampling distribution is the distribution of û

over repeated random samples of size n from the

distribution Fn. Note that sampling from Fn is equivalent

to random sampling with replacement from the data values

x1,x2,…,xn. Denote a particular bootstrap sample by

xp1; xp2;…; xpn and the corresponding estimate

ûp ¼ u xp1; xp2;…; xpn
� �

Sampling from Fn can be repeated an arbitrary number of

times to obtain the bootstrap distribution for ûp to any

desired degree of accuracy. There are many formal results

demonstrating how the bootstrap provides accurate approxi-

mations to the true sampling distribution of the estimate.

Basically, for large samples (n ) the bootstrap distribution of

ûp 2 û tends to coincide with the sampling distribution of

û2 u. Here u is the true underlying parameter of interest. In

particular, the standard deviation of the bootstrap distri-

bution will approximate the standard deviation of the

sampling distribution of û (i.e. the standard error of û).

Intuitively the bootstrap works because the empirical

distribution, Fn, will tend to the underlying population

distribution, F, as n ! 1. For a recent account of the

Bootstrap including a variety of refinements, see the

monograph by Efron and Tibshirani (1993).

3.1. An illustration with finite strain data

In the context of finite strain estimation, the sample data

are values of Ri and fi for the sample of n objects, thus

xi ¼ ðRi;fiÞ for i ¼ 1,2,…,n. The estimate of interest is û ¼�
R̂s; f̂s

�
where Rs and fs are defined in Eqs. (21) and (22).

To illustrate the Bootstrap, a set of real data based on

measurements of n ¼ 50 elliptical objects was considered.

This data comes from measurements of quartz clasts in

sandstone sample 19bc of Meere (1995), see below for more

detail on these samples. The data are shown in Fig. 3a. The

parameters for the average strain ellipse were found to be

R̂s ¼ 1:147 and f̂s ¼ 0:261 radians, respectively. The

bootstrap distribution of û was determined based on 5000

samples. Each sample consisted of sampling a set of 50

objects with replacement from the original set of 50

elliptical objects.The joint bootstrap distribution of R̂s and

f̂s as well as the marginal distributions are shown in Fig.

3b–d. The joint distribution is seen to have a wedge-shaped

appearance and the marginal distributions are both skewed

towards lower values. It should be noted that none of these

characteristics are consistent with a Gaussian form for the

sampling distribution.

The bootstrap estimates of the standard errors of Rs and

fs are 0.051 and 0.199, respectively. Application of the

percentile method (Efron, 1979) yields 95% confidence

intervals for the average strain ellipse parameters. The

intervals are (1.062,1.263) and (20.167,0.605) for Rs and

fs, respectively.

Robin and Torrance (1987) provided a method for

estimating the confidence interval associated with calculat-

ing the axial ratio of the finite strain ellipse using the method

of Robin (1977). Using these methods the axial ratio is

found to be R̂s ¼ 1:13 and the 95% confidence interval is

(1.03,1.23), which compares favourably with the results

from the bootstrap approach. Robin and Torrance (1987)

were able to estimate the 95% confidence interval because

the method of Robin (1977) essentially involves calculating

a mean, so that the central-limit theorem applies.There are

advantages and disadvantages to both the current method

and that of Robin (1977) and Robin and Torrance (1987).

Robin’s method is simpler as is the method for calculating

Fig. 3. Bootstrap analysis of 50 elliptical objects. (a) The original data set in

(Rf, f ) space. Note that there are several duplicate values on this plot

meaning that there are only 35 distinguishable points. (b) The joint

bootstrap distribution for the calculated values of Rs and fs. The marginal

distributions for Rs and fs are shown in (c) and (d), respectively.
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confidence interval, however, the method of Robin (1977)

requires an independent estimate of the orientation of the

finite strain axes and the uncertainty of this estimate is not

included in the analysis of Robin and Torrance (1987). On

the other hand the current bootstrap approach estimates the

uncertainty in both Rs and fs but the method is slightly more

complex and the bootstrap is computationally intensive.

4. Validation of the approach

4.1. A simulation study

In order to evaluate the performance of the Bootstrap

approach in the context of finite strain estimation, a set of

simulation studies was carried out. The general procedure

used is as follows:

1. Initial data sets xi ¼ ðRi;fiÞ, where i ¼ 1,…,n, were

generated by choosing Ri randomly from the interval

[Rmin,Rmax] and by choosing fi randomly from the

interval [0,p ]. In this study Rmin and Rmax were

arbitrarily choosen to be one and eight, respectively.

2. Each xi was strained to a known axial ratio (Ract) using

the standard equations for passively straining an ellipse

(Ramsay, 1967, Eqs. 5.22 and 5.27; Lisle, 1977b;

Mulchrone and Meere, 2001).

3. For each known strain (Ract) 100 random initial datasets

(xi ) were generated and strained, and the strain ellipse

parameters (Rcalc,fcalc) calculated for each xi, using the

method developed here.

4. The mean and standard deviation of the 100 (Rcalc,fcalc)

were used to estimate the sampling distribution for each

Ract.

Simulations for n ¼ 100 and n ¼ 400 were carried out

for a range of known strains (1–4.8 in 0.2 steps for n ¼ 100

and 1–5 in unit steps for n ¼ 400, see Figs. 4–6) similar to

those routinely encountered in practice. For each known

strain the true standard errors for the estimated average

strain ellipse parameters (Rcalc,fcalc) were obtained by

analysis of 100 simulated data sets. The reliability of the

Bootstrap was examined by comparing the bootstrap

standard errors for one synthetic data set with the true

standard errors calculated from 100 datasets.The meaning of

the standard error or standard error of the mean depends on

the context in which it is used. If there are multiple samples

available from a single population then the standard error is

the standard deviation of the sample means. However, if

there is only one sample available from a population of size

n, as is usually the case, the standard error for the mean of

the population
�
�X
�

is estimated by:

s �X ¼
sffiffi
n

p

where s is the standard deviation of the sample (Devore,

1995, p. 257). For sufficiently large n, this result is

independent of the underlying probability distribution

because of the central-limit theorem (Devore, 1995, p.

232), however, this only applies to simple statistics such as

calculating the mean. Due to the complexity of Rs and fs,

deriving an analytical expression for the standard error is

intractable, hence the bootstrap approach is advocated.

The results for the set of configurations examined are

shown in Figs. 4–6. The root mean squared percent

deviations are between the true and bootstrap standard

errors of 13.9 and 17.8% for the Rs and fs parameters.

Surprisingly, the deviations are remarkably systematic—in

the case of Rs, the bootstrap standard errors are 13.3% larger

on average, whereas they are 17.5% lower for fs. In

practical terms the discrepancies of the bootstrap standard

errors from the true are not substantial and it is clear that the

bootstrap standard errors can be used as a reasonable guide

to the level of the uncertainty in the calculated strain

estimates. For example, in Fig. 5d and f it is clear that the

bootstrap confidence interval consistently brackets the true

values of both Rs and fs.

4.2. Application to real data

The performance of the new method using the Bootstrap

Fig. 4. Comparison of bootstrap standard error (SE) with true standard error

calculated by simulation. B stands for a bootstrap value and T stands for

true value estimated by simulation. Results for (a) Rs and (b) fs.
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Fig. 5. Comparison of simulation (a)–(c) and bootstrap (d)–(f) for 100 ellipses per data set, axial ratio of the strain ellipse varies from 1 to 4.8 in 0.2 steps. Note

that even though values calculated with the method presented here do not coincide with the true values, the confidence interval calculated with the bootstrap

always includes the true value. Less variation is present in the simulation data because each single value is the average of 100 simulations. Notice also that the

bootstrap confidence intervals are conservative in so far as they are always larger than the confidence intervals estimated from the simulation. Error bars are at

the 95% confidence interval.
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approach was tested using real, previously published data.

Twenty-three data sets were measured from thin sections of

sandstones from the Variscides of southwest Ireland

(Meere, 1995). The first seven samples are of sandstones

that exhibit no observable tectonic fabric and were collected

from north of the Irish Variscan cleavage front. The

remaining 16 samples are of cleaved sandstones from

south of the deformation front. Thin sections utilised in this

study were cut orthogonal to the regional tectonic fabric and

parallel to the fabric strike, i.e. the ab plane of Meere (1995).

This ensured that the short axis of the calculated strain

ellipse was a crude first approximation to the z-axis of the

Fig. 6. Comparison of simulation (a)–(c) and bootstrap (d)–(f) for 400 ellipses per data set, axial ratio of the strain ellipse varies from 1 to 5 in unit steps.
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finite strain ellipsoid. Fifty Rf/f readings were measured in

each thin section using individual quartz clasts as strain

markers. Clasts that best approximated an ellipse were used

in preference to irregular, polycrystalline clasts.

Principal directions and finite strain ellipses were

calculated using the THETA FORTRAN IV programme

(Peach and Lisle, 1979) which utilises the ‘Theta Curve’

method of Lisle (1977b). The orientation of the principal

stretching axis of the finite strain ellipse is estimated by the

median orientation of the data. Furthermore, this method

involves incrementally unstraining the Rf/f data by a

coaxial strain with stretching axis perpendicular to the

preferred orientation of the data. After each increment of

unstraining, a x 2 test is applied to evaluate how well the

orientations of the strain-modified data fit to a uniform

circular distribution. The strain that produces the best fit to a

uniform distribution (i.e. generates the lowest x 2 value) is

taken to be the best strain estimate. Recently Mulchrone and

Meere (2001) presented an updated implementation of the

minimum x 2 method just described and the data have also

been analysed using their program. Mulchrone and Meere

(2001) estimate the orientation of the principal strain axes

by the vector mean of the deformed marker orientations

whilst Eqs. 5.22 and 5.27 of Ramsay (1967) are used for

destraining purposes. In addition, the data were analysed

using the Robin (1977) method, which involves calculating

the logarithmic average of lines drawn on the strain markers

parallel to the estimated principal finite strain directions of

the sample in question.

In an attempt to further filter out populations whose

orientations deviate from an initial uniform distribution, a

fundamental prerequisite of the Rf/f method, the skewness

of the f distribution for the original 23 samples was

measured. f distributions are not expected to exhibit

significant skewness if all the prerequisites are satisfied

(Borradaile, 1987). For the purposes of this study any

distribution with a skewness value outside the range of

(21 , x , 1) was rejected. High skewness values may

indicate an initial preferred orientation of clasts, e.g. due to

sedimentary imbrication, a complex deformation history or

both.

Of the original 23 samples analysed in Meere (1995),

seven are now deemed unsuitable for analysis because of

their high skewness values. The results from the remaining

16 sections are presented in Table 1 and Figs. 7 and 8. When

the 95% confidence interval error bars for the new method is

included it is clear that only half the Peach and Lisle (1979)

results fall within these error bars (Fig. 7a). The correlation

between the two methods, with an ‘r’ value of 0.3, is

consequently quite poor (Fig. 8a). There are several reasons

for this lack of correlation. Firstly and most importantly, the

implementation of this algorithm used by Meere (1995) was

probably in error. Other less important factors may be that

the Peach and Lisle (1979) method is only as accurate as the

step size used in de-straining the sample and furthermore

this method uses grouped, rather than the actual primary

data to calculate x 2. In general, any technique that uses all

available data is preferable to a method using only a subset

of the data and is almost always the most efficient statistic

possible.

When the new method is compared with the Mulchrone

and Meere (2001) method, which is also based on the ‘Theta

Curve’ method of Lisle (1977b), there is a better correlation,

an ‘r’ value of 0.7 (Figs. 7b and 8b), between results from

the two methods. Consulting the confidence intervals given

in Table 1, it is clear that the estimates from both Mulchrone

and Meere (2001) and the present study overlap in almost all

cases and thus they agree to within the precision of the

methods. This also indicates that it is the implementation of

Meere (1995) and not the ‘Theta Curve’ method, which

Table 1

Results of analysis of the quartz clast data of Meere (1995) including skewness and calculated Rs values for Peach and Lisle (1979), Mulchrone and Meere

(2001), Robin (1977) and present method. Lower and upper values for confidence intervals are included in brackets except for Peach and Lisle (1979) because

confidence intervals were not recorded in the original analysis of Meere (1995)

Section Skewness Peach and Lisle (1979) Mulchrone and Meere (2001) Robin (1977) This study

1ab 0.09 1.2 1.05 (1.00,1.15) 1.09 (1.01, 1.21) 1.10 (1.03, 1.22)

3ab 0.21 1.6 1.25 (1.10, 1.55) 1.33 (1.18, 1.53) 1.33 (1.16, 1.52)

7ab 0.50 1.3 1.25 (1.00, 1.45) 1.17 (1.05, 1.33) 1.17 (1.06, 1.33)

9ab 20.03 1.8 1.85 (1.55, 2.05) 1.66 (1.52, 1.88) 1.67 (1.53, 1.89)

10ab 0.01 1.3 1.25 (1.10, 1.35) 1.35 (1.24, 1.51) 1.35 (1.23, 1.51)

11ab 0.21 1.7 1.40 (1.30, 1.55) 1.43 (1.28, 1.61) 1.44 (1.28, 1.63)

12ab 20.08 1.1 1.10 (1.05, 1.15) 1.16 (1.06, 1.31) 1.17 (1.07, 1.31)

13ab 20.79 1.4 1.30 (1.20, 1.35) 1.26 (1.13, 1.41) 1.28 (1.17, 1.41)

14ab 20.50 1.7 1.30 (1.10, 1.45) 1.27 (1.13, 1.40) 1.27 (1.14, 1.40)

15ab 20.20 1.5 1.60 (1.55, 1.70) 1.54 (1.38, 1.73) 1.53 (1.40, 1.72)

16ab 0.62 1.4 1.25 (1.20, 1.30) 1.20 (1.11, 1.33) 1.20 (1.12, 1.33)

17ab 20.26 1.2 1.50 (1.35, 1.60) 1.53 (1.41, 1.68) 1.53 (1.41, 1.69)

18ab 20.22 2 1.35 (1.10, 1.55) 1.26 (1.11, 1.42) 1.24 (1.10, 1.41)

19ab 20.95 1.4 1.55 (1.30, 1.75) 1.58 (1.47, 1.75) 1.58 (1.47, 1.75)

21ab 0.64 1.1 1.35 (1.30, 1.45) 1.35 (1.23, 1.50) 1.35 (1.23, 1.51)

23ab 20.54 1.5 1.40 (1.25, 1.50) 1.36 (1.24, 1.53) 1.39 (1.27, 1.55)
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resulted in the poor correlation between Peach and Lisle

(1979) and the present method.

The Robin method exhibits an excellent correlation

(‘r’ ¼ 0.9) with the new method (Figs. 7c and 8c). It also

has to be noted that the error bar range for the results of

the new method are generally quite small allowing in this

case a meaningful comparison of strain estimates and

patterns in a relatively low strain environment. The

overall pattern of low strain estimates noted by Meere

(1995) north of the cleavage front is again evident and

reinforced in the case of Robin (1977), Mulchrone and

Meere (2001) and the new method.

5. Conclusions

A new method for calculating finite strain from

distributions of elliptical objects is presented. Basic

assumptions include that the initial distribution of objects

is uniformly random with respect to orientation and that the

distribution of axial ratios is independent of orientation.

However, unlike many other approaches (Matthews et al.,

1974; Borradaile, 1976; Robin, 1977) an estimate of the

orientation of the long axis of the strain ellipse need not be

independently determined prior to application of the method

developed here. The method is based on the conceptually

Fig. 7. A comparison of the new method with existing methods by the

analysis of sandstone quartz clast data from the Irish Variscides. (a) A poor

correlation with the method of Peach and Lisle (1979). (b) A good

correlation with Mulchrone and Meere (2001) and an excellent correlation

with the method of Robin (1977).

Fig. 8. Plots of Rs calculated using existing methods against Rs calculated

using the method of this study. Ideally a straight line through the origin is

optimal. Again Robin (1977) gives the best correlation.
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simple fact that the mean radial length of a set of randomly

oriented ellipses in the unstrained state evaluates to a circle,

so that after strain the mean radial length equates to the

strain ellipse. The mathematics associated with the method

are relatively simple, so much so that the method could very

easily be implemented in a spreadsheet application.

It is demonstrated that errors associated with the method

are calculable using the bootstrap, and a comparison of the

standard error of the bootstrap distribution with the standard

error of simulated data indicates that the bootstrap errors are

accurate. The method was applied to a set of real data from

the Irish Variscides and results were cross-checked with

those from the Robin (1977) method. There is a remarkable

consistency between the results of both analyses.
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